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ABSTRACT 
 
  

Sand liquefaction refers to a phenomenon whereby sand loses its strength and 

stiffness. It is responsible for many of the damages associated with earthquake. Partial 

desaturation of soil using bacterial production of biogas is a new method for mitigation 

of sand liquefaction. However, there is a concern that whether biogas in sand can be 

stable over a long duration when there is groundwater flow.  In this study, a new method 

that combines biogas generation in situ with biosealing of the biogas bubbles in sand 

using a small quantity of biocement was developed. Biogas bubbles were produced in 

the form of nitrogen gas during microbial denitrication process by denitrifying bacteria 

Acidovorax sp. DN1 in fully saturated sand. It was experimentally observed of complete 

removal of biogas under flow conditions with a hydraulic gradient of 0.1 within three 

days. On the other hand, if sand with biogas bubbles was biosealed with calcium 

carbonate crystals produced by urease-producing bacteria Sporosarcina pasteurii DSMZ 

33, the stability of biogas bubbles was improved by 40% - 70%. Therefore, the 

sequential biogas production in saturated sand and biosealing of the gas bubbles in sand 

pores could be useful for sustainable mitigation of sand liquefaction under groundwater 

flow. The cost of the sequential biogas production in saturated sand and biosealing of 

biogas bubbles in sand pores could be significantly lower than the cost of 

biocementation of the saturated sand.
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CHAPTER I 

 INTRODUCTION 

 

1.1 Problem Statement 

Earthquake is one of the most devastating geo-hazards on earth causing damages to 

infrastructures and properties resulting in great economic losses and even life losses. Many of 

the damages were related to sand liquefaction – a phenomenon in which saturated sand loses 

its strength and acts as liquid. Development of excess pore water pressure in saturated sand 

due to cyclic load during earthquakes decreases effective stress of sand to its liquefaction so 

that structures founded on saturated sand can be settled and collapsed (Frydman et al., 2009). 

Conventional ground improvements for mitigation of sand liquefaction are vibroreplacement, 

compaction grouting, and deep dynamic compaction methods (Wijewickreme and Atukorala, 

2005; Chu et al., 2009). However, these methods are energy-consuming and expensive. Cost-

effectiveness becomes the most important challenge in developing new liquefaction 

mitigation methods. 

Energy-effective alternative for compaction grouting of loose sands is induced-partial 

saturation (IPS) that can be performed by introduction of gas in saturated sand and 

entrapment of gas bubbles there (Yegian et al., 2007). Microbiological production of gas in 

soil were proposed to introduce small gas bubbles in saturated soil (Rebata-Landa, 2007; He 

et al., 2013).This method is an introduction of nitrogen gas bubbles into soil using 

biochemical reduction of nitrate (denitrification) in situ. However, previous literatures and 

studies have shown that biogas bubbles are not stable under conditions of vertical or 

 

http://www.sciencedirect.com/science/article/pii/S1571996005800199
http://www.sciencedirect.com/science/article/pii/S1571996005800199
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horizontal flows of groundwater. In this scenario, a new method which combines the biogas 

production in situ with the sealing of the biogas bubbles in sand using small quantity of 

biocement has been developed.  

 

1.2 Study Scope 

 The scope of this study includes: 

1) Study the feasibility and method of combining of biogas generation and biosealing of 

the gas bubbles.   

2) Select and cultivate the favorable denitrification bacteria and urease-producing 

bacteria. 

3) Apply the biogas generation and sequential biosealing into saturated sand in small 

scales to test the effectiveness. 

4) Conduct biogas stability tests under seepage in sand columns to further evaluate. 

 

1.3 Outline of Report  

 This thesis consists of six chapters. Chapter 2 includes a literature review on 

application of two microbial methods to mitigate sand liquefaction.  Chapter 3 discusses the 

selection of bacteria strains and cultivation of urease-producing bacteria. Chapter 4 describes 

the experimental designs for analysis of biogas stability in saturated sand. Chapter 5 presents 

the test results and evaluation of biogas stability with and without biosealing of gas bubbles. 

The conclusions and the recommendations are explained in Chapter 6.  
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CHAPTER II 

 LITERATURE REVIEW 

 

2.1 Introduction 

This chapter will start with a literature review on the development of the induced 

partial saturation method and the evaluation of its effectiveness. Furthermore, a brief review 

on the microbially induced calcite precipitation technology will help to understand the 

feasibility and mechanism of biosealing of the gas bubbles.  

 

2.2 Induced partial saturation 

The induced partial desaturation (IPS) in loose saturated sands can decrease excess 

pore water pressure and increase the bearing capacity and shear strength of the soil, which is 

beneficial in foundation design and roadway construction (Seagren and Aydilek, 2010). It has 

been demonstrated that the liquefaction resistance of saturated sand can be significantly 

increased when the sand is slightly desaturated with some voids displaced by gas (Yegian et 

al., 2007; Chu, 2011; He et al., 2013; He and Chu, 2014). Even a small decrease in the degree 

of saturation of sand to 99 - 97% increases resistance of water-saturated sand to liquefaction 

by 30 - 40% (Xia and Hu, 1991; Yang et al., 2003), while reduction of the sand saturation to 

90% can increase resistance of water-saturated sand to liquefaction twice (Chaney, 1978; 

Yoshimi et al., 1989). An injection of air into ground to desaturate the sand and increase its 

liquefaction resistance has been done in the real scale (Yoshimi et al., 1989; Okamura et al. 

2006; 2011 Shiraishi, 2007; Okamura, 2006). However, gas injected in this way may be not 
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evenly distributed. Yegian et al. (2011) has proposed a method to generate oxygen bubbles 

in-situ using a chemical compound sodium percarbonate (Na2CO3.3H2O2). However, oxygen 

tends to react with minerals in soil. Thus, the amount of gas may reduce with time. Electro-

chemical (Hocking, 2003) also produces chemically active gases that diminish the stability of 

gas microbubbles.  

 

2.2.1 Induced partial saturation using microbial denitrification process   

Microbiological production of gas in soil were proposed to introduce smaller and 

more stable gas bubbles in saturated soil (Rebata-Landa, 2007; He et al., 2013).This method 

is an introduction of nitrogen gas bubbles into soil using biochemical reduction of nitrate 

(denitrification) in situ. It is most suitable approach because nitrogen gas is a chemically inert 

substance (Rebata-Landa and Santamarina, 2006; Seagren and Aydilek, 2010). Different 

organic and inorganic substances can be biooxidized by nitrate but ethanol (C2H5OH), acetic 

acid (CH3COOH), or glucose (C6H12O6) that can be as used as 75% (w/v) syrup from corn, 

are most suitable electron donors because of their low cost, availability, and high solubility in 

water. Their biooxidation by nitrate (denitrification), is shown below:      

 

1.67 C2H5OH + 2 NO3
-      N2↑+ 3.33 CO2  + H2O     + 2 OH-      (1),  

1.25 CH3COOH + 2 NO3
-  N2↑+ 2.5 CO2  + 1.5 H2O + 2 OH-      (2), 

0.42 C6H12O6 + 2NO3
-       N2↑+ 2.5 CO2 + 1.5 H2O + 2 OH-       (3). 

 

The stoichiometrical parameters of these reactions are almost same: consumption of 

electron donor is 3.4 kg/m3 of N2 and consumption of electron acceptor (sodium nitrate) is 
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7.6 kg/m3 of N2. The consumption of electron donor and acceptor for 10% (volume of 

gas/volume of water) desaturation of soil with porosity 50% is 0.55 kg/m3 of saturated soil. 

Production of carbon dioxide in reactions 1-3, which is from 120 to 159 g/m3 of N2 or from 

12 to 16 g/m3 of water in saturated soil with 50% porosity, is not accounted for desaturation 

of soil because solubility of CO2 in water at 10oC is 2500 g/m3. 

There is almost no cost difference between these electron donors: the cost of electron 

donor is from $0.5 to $0.7/kg, the cost of electron acceptor (sodium nitrate) is from $0.4 to 

$0.5/kg, so the estimated cost of electron donor and acceptor for partial desaturation is from 

$5.1 to $6.2/m3 of  N2. The estimated cost of electron donor and acceptor for 10% (volume of 

gas/volume of water) desaturation of soil with porosity 50% is from $0.25 to $0.31/m3 of 

saturated soil. However, even stoichiometrical and economic parameters of the electron 

donors are similar, ethanol could be more preferable electron donor then acetic acid or 

glucose syrup for geotechnical applications because it is liquid with neutral pH and not 

corrosive substance with low viscosity.  

Biogenic gas generation can increase the liquefaction resistance of soils subjected to 

cyclic loading at earthquake (Seagren and Aydilek, 2010; He and Chu, 2014). The using of 

denitrifying bacteria to generate nitrogen gas in-situ (Chu et al. 2009; He et al. 2013; He and 

Chu, 2014) has two major advantages over the other gas-introducing methods: (1) the gas 

bubbles generated by denitrifying bacteria are tinny and thus the bubbles are more stable 

underground; and (2) nitrogen gas is inert and very low in solubility. The studies by He et al. 

(2013), He and Chu (2013) using a series of laboratory experiments including shaking table 

tests have proven that the production of biogas in situ is a feasible method for mitigation of 

liquefaction of sand.  
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2.2.2 Long-term sustainability problem with Induced partial saturation  

A problem of a long-term sustainability of gas bubbles in sand during vertical or 

horizontal flows of groundwater is remained most important for practical application of IPS. 

Hypothetically, stability of nitrogen gas bubbles can be ensured by low hydraulic 

conductivity of soil due to the decrease in the size of the water-conducting pores because of 

soil pores clogging by the gas bubbles (Baveye et al., 1998; Seagren and Aydilek, 2010). 

Diffusion and dissolution of such gases as oxygen and nitrogen in water is also low. 

Experiments of Yegian et al. (2007) showed that under hydrostatic conditions the degree of 

saturation of sand with introduced gas bubbles slightly increased from about 83 to 84% after 

442 days. Similar results for hydrostatic conditions were obtained by He (2012). Field data of 

Okamura et al. (2006) showed that gas bubbles introduced in sand during sand compaction 

piling remained entrapped there for 26 years.  

Meanwhile, there are controversial data on the stability of gas bubbles in partially 

saturated sand in case of vertical or horizontal flow of water. It is known that from the work 

of He (2012, 2013) on the production of biogas in situ using denitrifying bacteria that 

nitrogen gas bubbles are not stable in 1 m length sand column during upward or downward 

flows of water with hydraulic gradient 0.1. These bubbles disappeared from sand after 2 - 4 

days increasing degree of sand saturation up to 100%. For one day of experiment, saturation 

of sand increased only from 89 to 92%. Other data (Eseller-Bayat et al., 2012) showed that 

after 18 h of a vertical upward flow with hydraulic gradient from 0.05 to 0.5 with average 

hydraulic retention time 0.36 h the degree of saturation increased only from 82.6% to 83.6%. 

Long-term sustainability of the gas bubbles in sand under hydrostatic conditions has no 

doubts but under conditions of vertical or horizontal flows of groundwater in partially 
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saturated sand the gas bubbles will be probably not stable. Therefore, for practical 

implementation of induced partial saturation (IPS) in loose sands using biogas production in 

situ some additional technological solutions must be developed to ensure long-term 

sustainability of IPS under conditions of groundwater flows in sand.   

 

2.3 Mitigation of sand liquefaction using biocementation 

Another biological approach to mitigate saturated sand liquefaction is biocementation 

of loose sand using microbially induced calcite precipitation (MICP) (DeJong et al., 2006; 

Montoya et al., 2012). In this process, calcite is produced from calcium chloride and urea 

solution due to hydrolysis of urea by urease-producing bacteria (UPB) according to the 

following equations:  

 

(NH2)2CO + 3H2O + urease of UPB  2NH4
+ + HCO3

- + OH- + urease         (1) 

CaCl2  + HCO3
- + OH-     CaCO3↓+ H2O + 2Cl-                                            (2) 

 

Calcite is formed on the surfaced of urease-producing bacterial cells which are adsorbed on 

soil particles and thus binds soil particles together as shown in Figure 2.2.  

 It was shown that the resistance of the saturated sand to liquefaction, measured by 

decrease of excess pore water pressure ratio, significantly increased after MICP. MICP binds 

sand grains by calcite crystals resulting in higher strength of treated saturated sand. However, 

sufficiently strong biocementation of saturated sand, at the level of unconfined compressive 

strength 250 - 500 kPa, could be at the content of precipitated calcium carbonate of 75 -100 

g/kg of sand (Ivanov et al., 2012; Cheng et al., 2013). Therefore, it could be material-
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consuming process requiring about 88 kg CaCl2 and 96 kg of urea per 1 m3 of sand, which 

will cost at least $41/m3 of saturated soil. This value is about 140 times higher than 10% 

desaturation of soil using biogas production in situ. Therefore, biocementation of soil to 

mitigate liquefaction is too expensive to be applicable for large-scale geotechnical practice. 

However, Figure 2.1 shows that small quantity of biocement can significantly lower the 

hydraulic conductivity of soil even though large quantity of biocement is needed to enhance 

the unconfined compressive strength of soil. So, biocementation with much smaller quantity 

of used biocement probably can be used to seal the biogas bubbles in sand to increase 

stability of mitigation of soil liquefaction under conditions of groundwater flow.  

 

 

Figure 2.1 UCS and permeability of biocemented sand samples (after Cheng, 2013) 
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(a) 

 

 

(b) 

Figure 2.2 Microscopic image of biotreated sand: (a): SEM image of pores in sand filled 

with calcite crystals; (b): DESEM/FDX image of calcite crystals around sand grains (after Li, 

2014) 

 



www.manaraa.com

10 
 

CHAPTER III 

MICROBIAL STRAINS AND MEASUREMENTS  

 

3.1 Denitrification bacterial strain and medium 

The isolated strain Acidovorax sp. DN1 (He et al., 2013) that was able to oxidize 

ethanol by nitrate has been used for the production of gas bubbles in saturated sand. The 

isolation was done from denitrifying enrichment culture inoculated with sewage sludge of 

municipal wastewater treatment plant.  

Denitrifying bacteria have been grown anaerobically on the denitrifying medium of 

the following composition: C2H5OH, 0.5 g (0.63 mL); KNO3, 1.01 g; NH4Cl, 0.12 g; 

KH2PO4, 0.75 g; K2HPO4, 2.5 g; MgSO4•7H2O, 0.1g; FeSO4•7H2O, 0.01 g; CaCl2•2H2O, 

0.015 g; trace element solution 1ml; and addition of de-ionized water to 1 L. 1ml of trace 

element solution contains: EDTA-2Na, 10 mg; MnCl2•4H2O, 0.12 mg; ZnSO4•7H2O, 0.12 

mg; CuSO4•5H2O, 0.03 mg; (NH4)6Mo7O24•4H2O, 0.05 mg; NiCl2•6H2O,0.1 mg; 

CoCl3•6H2O, 0.1 mg; AlCl3•6H2O, 0.05 mg; H3BO3. 0.05 mg. The solid culture contained 

additionally 12 g/L Bactoagar Difco. The medium was purged with nitrogen gas before 

sterilization. Cultivation was at 30oC for 5 days. The concentration of biomass in the 

suspension after cultivation was measured by filtration of 50 ml of bacterial suspension 

through a membrane with 0.2 µm pores and drying the filter paper at 60oC for 12 h. The 

content of bacterial biomass introduced into the sand for biogas production was about 13 mg 

of dry biomass/kg of sand.   
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3.2 Cultivation of biocementation bacterial strain  

 

3.2.1 Enrichment culture of urease-producing bacteria 

Five samples of upper layer of soil in Iowa from different locations were combined 

for production of enrichment culture. Liquid medium for enrichment culture of ureolytic, 

alkalophilic and halotolerant bacteria had the following composition: Tryptic Soya Broth 

DIFCO™, 30 g; urea, 20 g; NaCl, 100 g, MnSO4∙H2O, 12 mg; NiCl2∙6H20, 24 mg, phenol 

red, 10 mg/l, distilled water 1 l. The factors of selection were high concentration of NaCl and 

presence of urea giving increase of pH after hydrolysis. All components of this medium, for 

exemption of urea, were sterilized at 121oC for 15 minutes. Stock solution of urea, 100 g/l, 

was filter sterilized by using 0.2 µm Whatman™ nitrocellulose membrane to avoid decay of 

urea during autoclaving. Two ml of the trace elements stock solution was added to 1 l of 

sterile medium. The trace elements stock solution consists of the following components: 

ZnSO4•7H2O, 0.1 g; MnSO4•H2O, 0.085 g; H3BO3, 0.06 g; CoCl2•6H2O, 0.02 g; CuCl2, 

0.004 g; Na2MoO4•2H2O, 0.04 g; FeCl2, 0.3 g, deionized water, 1 l. The pH was adjusted to 

2.0 using 1 N HCl. This medium was inoculated with soil sample in dosage 10 g of soil per 

0.5 L. Cultivation was on the shaker with 150 rpm at 30oC for six days.  

 

3.2.2 Measurement of urease activity 

Urease activity can be measured by production of CO2, ammonium ions, changes of 

pH, or by the changes of electric conductivity of urea solution due to production of 

ammonium. The common method for urease activity through the measurement of electric 

conductivity was used in our experiments. Urease activity was defined as the amount of 

 



www.manaraa.com

12 
 

ammonium produced from 1 M solution of urea per minute. 5 ml of bacterial suspension was 

added to 45 ml of 1 M urea solution. Concentration of ammonium produced from urea was 

determined using an electric conductivity meter showing linear correlation (R2 = 0.99) 

between the difference of molar concentrations of NH4
+ and the changes of electric 

conductivity of solutions in mS/cm (Figure 3.1). 

 

 

Figure 3.1 Calibration for urease activity 

 

Enrichment culture, even having high initial urease activity, showed its decrease with 

each culture transfer to fresh medium after every six days of cultivation (Stabnikov et al., 

2013). Urease activity of enrichment culture of urease-producing bacteria (UPB) decreased 

by 20 times after 5 transfers to fresh medium (Figure 3.2).   
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Figure 3.2 Change of urease activity of enrichment culture during transfers 

 

Considering that one cycle of batch cultivation included approximately four 

generations, average calculated rate of elimination of urease activity was about 5% per one 

generation, so urease activity is an unstable feature of enrichment culture of urease-

producing bacteria. The changes of urease activity in enrichment culture after transfers could 

be hypothetically explained by the genetic changes of the strains in this enrichment culture or 

the changes of microbial diversity of this enrichment culture. Therefore, enrichment cultures 

are not too suitable for MICP because of instability of urease activity.  
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Figure 3.3 50 L fermenter 

3.2.3 Cultivation of pure culture of UPB 

Pure culture of halophilic, alkaliphilic urease-producing bacteria Sporosarcina 

pasteurii DSMZ 33 (ATCC 11859, CCM 2056, NCIB 8841, and NCTC 4822) was purchased 

and used for further studies. Synonym of this strain is Bacillus pasteurii, grown on the 

Medium 220 + urea (20g/l), 30°C.  Content of the Medium 220 (CASO AGAR, Merck 

105458) is: peptone from casein 15.0 g; peptone from soymeal 5.0 g; NaCl 5.0 g; Agar 15.0 

g; Distilled water 1000.0 ml. Adjust pH to 7.3. Medium is identical with Tryptone Soy Agar 

(Oxoid Cm131). 

 Cultivation of the bacteria Sporosarcina 

pasteurii DSMZ 33 has been done in the 

Fermentation Facility, Center for Crops Utilization 

Research, Iowa State University using 50 L 

sterilizable-in-place fermenter as shown in Figure 

3.3 (ABEC, Inc., Bethlehem, PA, USA). 

Centrifugation of biomass was done in CEPA Z-41 

high-speed Centrifuge (Eppendorf AG, Hamburg, 

Germany), then biomass was suspensded in 1% of 

NaCl and freeze dried in VirTis Ultra 35 L Pilot 

Lyophilizer (VirTis SP Scientific, Stone Ridge, NY, 

USA). Medium for thermal sterilization included, g/L:  

Tryptic Soy Broth DIFCO™, 30;  Yeast Extract, 10g;  NaCl, 20 ; MnCl2· 4H2O, 14 mg/L; 

NiCl2·6H20, 24 mg. Urea, 10 g/L was added to the sterile medium using the Millipore system 

for membrane sterilization.  Cultivation was at 30oC, aeration rate 1.5 L of air /L of 

 

http://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium220.pdf
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liquid/min with addition of silicone antifoam, and pH control at 7.3 with 1M HCl. 

Consumption of oxygen started 6 h after inoculation and stopped after 24 h of cultivation 

(Figure 3.4).   

 

 

Figure 3.4 Dynamics of dissolved oxygen concentration and pH during cultivation of S. 

pasteurii DSMZ 33. 

 

Growth of biomass measured by OD at 650 nm and urease activity of culture (30 min 

period of measurement) is shown in Figure 3.5. Maximum of biomass concentration was at 

24 h, while urease activity increased even after 72 h of cultivation (Figure 3.5).    
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Figure 3.5 Growth of biomass measured by OD at 650 nm and urease activity of culture (30 

min period of measurement) 

 

pH of biomass after centrifugation was 6.1, initial urease activity was 14.4 mM/min 

but decreased twice for about 220 min (Figure 3.6).  
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Figure 3.6 Urease activity of biomass before freeze drying (concentration of dry biomass in 

1% NaCl was about 10 g/L). 

 

However, urease activity of the bacterial suspension after freeze drying 

(concentration of dry biomass 2 g/L) increased to 2 – 3.5 mM/min (Figure 3.7).    
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Figure 3.7 Urease activity after freeze drying (for two batches of cultivation in 50L 

fermenter)  

 



www.manaraa.com

19 
 

This dry biomass can be used as suspension in 1% of NaCl, or in dentiryfing medium, 

or urea solution for the biosealing of the gas bubbles in partially saturated sand.  

 

3.3 Testing of microbial strains for simultaneous denitirification and biocementation 

In principle, a strain of denitrifying bacteria can perform biocementation and 

biosealing at the same time because bioreduction of nitrate increase pH of medium and 

produce CO2 for precipitation of CaCO3. However, biogas production from nitrate by the 

strain Acidovorax sp. DN1 was inhibited in the solution of 0.75M CaCL2 and 1.5M of urea 

used for the bioseling. The following set of  halophilic and alkaliphilic strains of bacteria 

with denitrifying ability and urease activity for aerobic growth on the urease-producing 

bacteria (UPB) medium and anaerobic growth on the denitrifying medium (DM) with ethanol 

(electron donor) and nitrate (electron acceptor) was tested: 1) S. pasteurii DSMZ33; 2) 

Bacillus cohnii DSMZ 6356; 3) Bacillus sphaericus (Lysinibacillus sphaericus) DSMZ 28; 4) 

Paracoccus denitrificans DSMZ 1405; and Halomonas denitrificans DSMZ 735 (ATCC 

13511; NCIMB 700).  The results are shown in the Table 3.1. 

 

3.4 Measurements  

Nitrite and nitrate ions were measured using WQ nitrate and nitrite sensors (NexSens 

Technology, Inc., Beevercreek, OH, USA), as well as using cadmium reduction method 8039 

provided by the Hach Company with Hach DR 3900 spectrophotometer (Hach Company, 

Loveland, CO). pH and conductivity were  measured using Fisher Scientific™ accumet™ 

AP85 Portable Waterproof pH/Conductivity Meter. Oxidation–reduction potential (ORP) 

was measured using Milwaukee MW500 ORP Monitor (Milwaukee Instruments, Inc., Rocky 

Mount, NC, U.S.A.). 

 

http://www.straininfo.net/taxa/378;jsessionid=B44AE4961CA1AAD4025158F4F4E036C3.straininfo2
http://www.straininfo.net/taxa/371458;jsessionid=B44AE4961CA1AAD4025158F4F4E036C3.straininfo2
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Table 3.1 Parameters of the strains after 5 days of growth 

Parameter after 5 days of cultivation                        Strain 

DSMZ 
33 

DSMZ 
6356 

DSMZ 
28 

DSMZ 
1405 

Acidovo
rax sp. 
DN1 

Anaerobic growth in denitrifying medium 
(non-halophilic denitrification ability ) 

+ - + + + 

Production of gas bubbles Anaerobic 
growth in denitrifying medium with (non-
halophilic  ability to produce N2 from 
nitrate) 

- - + + + 

Anaerobic growth in denitrifying medium 
with 2 M of NaCl and production of gas 
bubbles 

(ability for halophilic denitrification)  

n.d. n.d. n.d. n.d. - 

Anaerobic growth in denitrifying medium 
with 1 M of CaCl2 and 1 M of urea and 
production of gas bubbles (ability for 
halophilic denitrification in biocementing 
solution) 

n.d. n.d. n.d. n.d. - 

Final concentration of nitrate in 
denitrifying medium, mg/L  

79 122 1 57 0 

Final pH after anaerobic growth in 
denitrifying medium (a sign of 
denitrification) 

9.4 7.3 9.3 7.6 7.5 

Final pH after aerobic growth in UPB 
medium (a sign of urease activity)  

9.2 9.2 9.0 9.0 7 

Urease activity of bacteria grown in UPB 
medium, mM/min 

1.12 0.33 0.04 0 0 

Urease activity of bacteria grown 
anaerobically in denitrifying medium, 
mM/min 

0.4 0 0 0 0 
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CHAPTER IV 

EXPERIMENTAL STUDY 

 

4.1 Introduction 

Two preliminary experiments on biogas generation and gas bubbles stability in 

saturated sand using centrifugation analysis were conducted in 15 ml and 50 ml tubes 

separately. As discussed in Section 3.2, denitrification bacteria must not be injected together 

with biocementation solution which has high concentrations of CaCl2 and urea. Therefore, in 

15 ml tubes denitrification bacteria and denitrification medium were added first followed by 

the injection of biocementation bacteria suspended in biocementation solution. For 50 ml 

tubes experiment, another sequential treatment method was developed. In this method, 

mixture of denitrification bacteria, denitrification medium and biocementation bacteria was 

firstly injected followed by the injection of biocementation solution. Control and experiments 

were done in triplicates. 

In order to further verify the improvement of the stability of the biogas bubbles with 

biosealing, sand columns were tested under water flow conditions for 10 days. The 

biosealing the bacterial suspension of S. pasteurii DSMZ33 was introduced altogether with 

the suspension of Acidovorax sp. DN1 and denitrification medium. 

 

4.2 Centrifugation analysis of biogas production and gas bubbles stability 

To analyze biogas production and gas bubbles stability in sand nine Corning®15 ml 

screw cap conical bottom centrifuge plastic tubes were filled with 4.3 ml of denitrifying 

medium, then 0.2 mL of suspension of enrichment culture of denitrifying bacteria. 10 mL of 

 



www.manaraa.com

22 
 

sand was slowly added from the tube top. When 50 mL- tubes have been used for experiment, 

14.4 mL of denitrifying medium was mixed with 0.6 mL of denitrifying bacteria suspension, 

and filled in with 30 mL of sand that was slow added from the tube top. 

The level of liquid was about 1 cm higher than level of sand which is referred as zero-

level in the following discussion. The desaturation of sand was monitored by the increase of 

the level of liquid above zero-level due to production of gas bubbles in sand voids and water 

displacement from the voids. As shown in Fig. 4.1, the initial level of wet sand (volume S0) 

in the tube was bigger that the volume of added dry sand (Sd) and was slightly below the 

zero-level of liquid (volume W0). The gas space of the tubes was flashed with nitrogen gas 

and the tubes were sealed with the caps. After 5 days of the denitrification process, the level 

of water (volume W1) increased due to production of biogas (= W1 - W0) but the level of sand 

(volume S1) did not changed (S1 = S0). Specific production of biogas (N2 + CO2) was 

calculated as (W1 - W0)/Sd, mL of gas/mL of dry sand. 

After biogas production in saturated sand, three control tubes were centrifuged for 20 

min at 600×g.  The level of water decreased slightly (volume W2) due to release of gas 

bubbles from sand (= W1 - W2), and the level of sand (volume S2) was decreased also due to 

compression of sand particles (= S1 - S2). The loss of gas bubbles after denitrification and 

centrifugation was calculated as 100% x (W1 - W2)/(W1 - W0). Loose sand settlement after 

biogas production and centrifugation was calculated as 100% x (S1 - S2)/S1. 

In first option of the biosealing – surface biosealing, the biocementation bacteria 

suspended in biocementation solution was applied only on the surface of the sand 

approximate 1 cm below the level of sand. In the second option of the biosealing – bulk 

biosealing, the biocementation bacteria suspended in biocementation solution was injected 
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slowly, approximately 1 ml/min, from the bottom of the tube with sand. The volume of liquid 

during injection for biosealing was maintained constant at zero-level (W3 = W0) by the 

removal of liquid to 1 cm above the level of sand.  After three days of incubation the level of 

liquid was increased (W4) showing production of biogas (CO2) during biocementation.  The 

experimental tubes were centrifuged for 15 min at 600×g. The level of liquid in the tubes 

after centrifugation (volume W5) decreased due to release of gas bubbles from sand, and 

level of sand (volume S5) decreased also due to compression of partially desaturated sand. 

The loss of gas bubbles after biosealing and centrifugation was calculated as 100% x (W4 - 

W5)/(W1 - W0). Sand settlement after biosealing and centifugation was calculated as 100% x 

(S3 - S2)/S2. The differences between the tubes and the procedures described above are shown 

in Figure 4.1.  The changed levels of liquid (W) and sand (S) are shown in Table 4.1 and 

Table 4.2. Control and experiments have been done in triplicates. Mean value ± standard 

deviations are shown in the data comparisons.
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Figure 4.1 Measurement of biogas production and biogas bubbles stability 
after centrifugation. 
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Table 4.1 Centrifugation analysis of biogas production and gas bubbles stability in 15 ml tubes 

 
 

Centrifugation analysis of biogas production and gas bubbles stability in 15 ml tubes 
1a, 2a, 3a - no biosealing, 1b, 2b, 3b - bulk biosealing, 1c, 2c, 3c - surface biosealing 

S.L. - Sand Level, W.L. - Water Level (ml) 
    1a 2a 3a 1b 2b 3b 1c 2c 3c 

Initial S.L. 10.8 9.6 10.4 10.6 9.8 10.4 10.5 9.5 10 
W.L 11.5 10.5 11 11.1 10.5 11 10.9 10.4 10.7 

After 
denitrification 

S.L. 10.8 9.6 10.4 10.6 9.8 10.4 10.5 9.5 10 
W.L. 11.8 10.8 11.5 11.4 10.9 11.5 11.4 10.7 11 

After 
biocementation 

S.L. 10.8 9.7 10.5 10.4 9.5 10.1 10.5 9.5 10.1 
W.L. 11.7 10.7 11.5 10.7 9.5 10.1 11.6 10.7 11 

After 
centrifugation 

S.L. 10.7 9.5 10.3 10.4 9.5 10.1 10.4 9.5 10 
W.L. 11.6 10.5 11.4 10.4 9.5 10.1 11.5 10.7 11 
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Table 4.2 Centrifugation analysis of biogas production and gas bubbles stability in 50 ml tubes 

 
 

Centrifugation analysis of biogas production and gas bubbles stability in 50 ml tubes 
1a, 2a, 3a - no biosealing, 1b, 2b, 3b - bulk biosealing 

S.L. - Sand Level, W.L. - Water Level (ml) 
  1a 2a 3a 1b 2b 3b 

Initial S.L. 36.25 36 35.5 32.5 33 33 
  W.L 38 38 37.5 36 36 36.25 

After 
Denitrification 

S.L. 37.5 37 36.5 35 35 35 
W.L. 40 39.5 38.75 37 37 37.5 

Biogas Production (ml of 
gas/ml of sand) 

0.055 0.042 0.035 0.031 0.03 0.038 

After biosealing S.L. 37 36.5 36.5 34 34.5 35 
W.L. 40 40 39.5 36.25 36.25 37 

After 
centrifugation 

S.L. 36 36 35.5 34 34.5 35 
W.L. 39 39 39 36.25 36.25 37 

Loss of gas bubbles  50% 67% 40% 0% 0% 0.00% 

Sand settlement 2.80% 1.40% 2.80% 0.00% 0% 0.00% 
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4.3 Stability of biogas bubbles in sand columns under seepage 

 Six acrylic columns filled with saturated sand were set up as shown in Figure 4.2 to 

examine the effect of water flow on biogas bubbles stability after denitrification only and 

after sequential denitrification and biocementation.  

 The length of each column was 150 cm and the inner diameter was 7.62 cm. The 

length of the sand sample was 100 cm as shown in Figure 4.2(a). A 15 cm-thick layer of 

gravel was placed on the bottom of the columns. 1.9 L of water and then 7 kg of dry Ottawa 

sand were added into each column so that an initial sand height was 100 cm. Dry sand was 

added slowly, approximately 200 g/min so that the initial degree of saturation could be 

assumed as 100%. Two water tanks with a water head difference of 10 cm were connected to 

the bottom and the top of the columns in order to create either upward or downward seepage 

with a hydraulic gradient of 0.1. Another water reservoir was used to supply water and 

collect water for the two water tanks.  
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(a) 
 

 

(b) 

Figure 4.2 Set up of the test for biogas bubbles sustainability: a) schematics of one column; 

b) picture of the facility. 
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The conditions of the sand treatment and gas bubbles stability testing are shown in Table 4.3. 

 

Table 4.3 The conditions of the sand treatment and gas bubbles stability testing 

 

The volume of generated biogas bubbles during denitirification was calculated by the 

increase of the water level in the columns. Two parameters were used to evaluate biogas 

bubbles stability: 1) the permeability of sand, and 2) the degree of saturation. The 

permeability was determined by the measuring the amount of water outflow for a known 

duration under a constant head. The reduced degree of sand saturation was determined by 

measuring the decrease of the sand level and the decrease of water volume in the water 

reservoir. This water volume replaced the volume of biogas bubbles in sand.    

The first step for reducing the degree of saturation of the sand sample was to initiate 

the denitrification process to generate biogas. The bacterial suspension and the components 

of the media for denitrification and biosealing were the same as described in the test with the 

tubes. However, the concentrations of nitrate and ethanol in the denitrification medium were 

doubled to achieve the target volume of gas generation and the target degree of sand 

saturation. A mixture of 1.6 L of denitrification medium and 0.3 L of denitrifying bacterial 

culture Acidovorax sp. DN1 were added to each of the six columns. Additionally, 2g of 

Column 

No 

Sand treatment Flow of water during gas 

bubbles stability test 

Column 1a Denitrification process only Hydrostatic condition 

Column 2a Denitrification process only Downward flow condition 

Column 3a Denitrification process only Upward flow condition 

Column 1b Denitrification followed by biosealing Hydrostatic condition 

Column 2b Denitrification followed by biosealing Downward flow condition 

Column 3b Denitrification followed by biosealing Upward flow condition 
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freeze dried biomass of the biosealing bacteria S. pasteurii DSMZ 33 were added to the 

columns 1b, 2b, and 3b.  

The level of water and the level of sand in each column were monitored. When the 

water level became constant and the denitrification was completed, biocementation solution 

was injected slowly to generate bioseal. In the columns 1b, 2b, and 3b, the biocementation 

solution containing 1 M CaCl2 and 2 M urea which replaced the denitrification medium in 

the columns using downward flow at a flow rate of 10 ml/min. Four of the six samples 

(Column 2a, 3a, 2b, and 3b) were tested under either downward flow or upward flow 

conditions. 
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CHAPTER V 
 

RESULTS AND DISCUSSIONS 

5.1 Centrifugation analysis of biogas production and biosealing of the gas bubbles in 

15 mL tubes 

 As shown in Table 4.1, production of biogas was 0.04 ± 0.01, mL biogas /mL of dry 

sand. Degree of saturation of sand after biogas production decreased from 100% to 92% ± 

2%. The loss of gas bubbles after denitrification was 26 ± 6 % but the biosealing of wet sand 

decreased gas bubbles loss to zero. The sand settlement after denitrification was 1.6 ± 0.5 % 

but biosealing resulted in no sand settlement. Figure 5.1 shows a microscopic image of one 

sample with small quantity of biocementation biosealing the sand grains. 
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(a) 

 

(b) 
Figure 5.1 Microscopic image of biocemented sand:a) SEM image; and b) Chemical analysis 

(Ca shows the carbonate location and it is correlated with C and O) 
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5.2 Biogas production and biosealing of biogas bubbles in 50 mL tube 

During biogas production, water level increased for 70 h of incubation then slightly 

decreased, probably due to solubility of CO2 in water (Figure 5.2).  

 

Figure 5.2 Dynamics of biogas production in saturated sand. 

 

The data of biogas production, biosealing, and stability of biogas bubbles in sand in 

the 50 mL tube are shown in Table 4.2. The loss of gas bubbles after denitrification was 53 ± 

13 % while the biosealing of wet sand decreased gas bubbles loss to zero. The sand 

settlement after denitrification was 2.3 ± 0.8 % while biosealing resulted in no sand 

settlement.   
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5.3 Stability of biogas bubbles in sand columns under seepage 

Level of water in the columns reached maximum after 2 days in case when 

denitrifying bacteria were introduced into the columns altogether with UPB and after 4 days 

in case when denitrifying bacteria were introduced into the columns without UPB (Figure 

5.3). The curves 1b, 2b, and 3b show the process where denitrifying bacteria and UPB were 

added altogether; the curves 1a, 2a, and 3a show the process where only denitrifying bacteria 

added into the columns with saturated sand. The conditions in six sand columns after 

denitrification process are shown in the Table 5.2.  

            

Table 5.1 Biogas production and biosealing of the gas bubbles 

Parameter Biogas production 

by Acidovorax sp. 

DN1without sealing 

(control)  

Biogas production 

and sealing made by 

simultaneous 

introduction of S. 

pasteurii DSMZ33 

and Acidovorax sp. 

DN1 

Biogas production 

and sealing made 

by separate  

introduction of S. 

pasteurii DSMZ33 

and Acidovorax sp. 

DN1 

Biogas production, 

mL of gas/mL of dry 

sand 

0.044 ± 0.008 0.033 ± 0.003  0.041 ± 0.006 

Degree of Saturation 

of sand,%  

91 ± 2 93 ± 6 92 ± 1 

Loss of biogas 

bubbles in sand, % 

52 ± 11 0 0 

Sand settlement, % 2.3 ± 0.7  0  0  
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Figure 5.3 Changes of water level during denitirification. 

 

Table 5.2 The degree of sand saturation and pH in six sand columns after denitrification 

process 

Column Degree of saturation, 

% 

     pH 

   

1a 88.5 6.5 

2a 89.7 7 

3a  89.6 7.2 

1b 89.8 7.3 

2b 87.2 7.1 

3b 87.9 7.4 

 

-2

-1

0

1

2

3

4

5

6

7

0 50 100 150 200

1a 2a 3a 1b 2b 3b

  I
nc

re
as

e 
of

 th
e 

le
ve

l o
f l

iq
ui

d 
in

 th
e 

co
lu

m
ns

, c
m

 
   Time, h 

 



www.manaraa.com

36 
 

Even though water level slightly decrease after denitrification process was completed 

as shown in Figure 5.3 which could be explained by the dissolution of CO2 gas, there was no 

variation in water level any more in 10 days for column 1a and 1b under hydrostatic 

condition.  Under downward and upward flow conditions, without biosealing of the gas 

bubbles the sand column became fully saturated in 3 days.  Meanwhile with only one 

treatment of biocementation there was 4.5% reduction in degree of saturation in the first 2 

days and the gas bubbles remained steady in another 8 days under downward flow.  A little 

more gas bubbles lost under upward flow condition than that under downward flow condition 

but still there were half of gas bubbles remained. The change in degree of saturation and the 

change in the coefficient of permeability are shown in Figure 5.4 and Figure 5.5. 

 

 

Figure 5.4 Changes in degree of saturation.  
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Figure 5.5 Changes in the coefficient of permeability.  

 

5.4 Discussion  

There are known experimental data on the movement of inert gas bubbles in saturated 

porous soil (He et al., 2013), which is very sensitive to changes in pressure and in the 

terminal velocity as described by the Stokes formula (Etiope and Lombardi, 1996). 

Biosealing of partially saturated sand showed high efficiency of stabilization of the biogas 

bubbles that were produced in saturated sand. So, the production of biogas in situ and 

biosealing of the gas bubbles could be useful for sustainable mitigation of sand liquefaction 

in case of groundwater flow through saturated sand that can remove gas bubbles from the 

sand pores. The difference between biosealing and biocementation is only in the quantity of 

the added reagents.  So, at low quantity of the added reagents the precipitation of calcium 

carbonate is going mainly in the sites of sand grain contacts, which is sealing the 

microchannels (Figure 5.6 a, c). However, at higher quantity of added reagents precipitation 
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will be also in the sand pores creating high strength of the biocemented sand (Figure 5.6 

b,c). 

.     

 

Figure 5.6 Biosealing and biocementation in saturated sand. a: biosealing of the channels in 

sand; b: biocementation of the pores in sand; c: SEM picture of biosealing and 

biocementation in saturated sand. 
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The content of precipitated calcium carbonate in dry sand for complete biosealing of 

biogas in our experiments was about 2 % (w/w), which is four times lower than content of 

calcium carbonate to create the unconfined compressive strength of biocemented sand at the 

level 250 kPa (Ivanov et al., 2012). Therefore, the cost of the biogas production in situ 

combined with the biosealing of the gas bubbles is significantly lower than the cost of 

saturated sand biocementation for mitigation of sand liquefaction.  
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions  

Two types of experimental studies were carried out. One used centrifugation using 

test tubes and another model tests with sand columns.  

1). Biogas bubbles produced in partially saturated sand in quantity about 4% (v/v) were 

unstable under centrifugation acceleration 600×g. The biogas bubbles were stabilized in the 

sand pores after biosealing using microbially-induced carbonate precipitation (MICP). The 

settlement of saturated sand was around 2% but was decreased to zero after MICP with 2% 

of precipitated calcium carbonate in partially saturated sand.  

2). The results of the sand column tests have shown that gas bubbles were stable under 

hydrostatic conditions. However gas bubbles in sand were not stable under upward or 

downward flows if biosealing is not applied.  

3). With the use of biosealing, the stability of the gas bubbles can be significantly enhanced. 

Even after 240 h of a vertical upward flow with hydraulic gradient 0.1 the degree of 

saturation increased only from 87.2% -87.9% to 91.7%-94.0%. 

4). Therefore, the sequential biogas production in saturated sand and biosealing of the gas 

bubbles in sand pores could be useful for sustainable mitigation of sand liquefaction in case 

of groundwater upflow through saturated sand that can remove gas bubbles from sand pores. 

The cost of the sequential biogas production in saturated sand and biosealing of biogas 

bubbles in sand pores could be significantly lower than the cost of biocementation of the 

saturated sand.  
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6.2 Recommendations 

 Two injections of the solutions for mitigation of sand liquefaction have been used in 

our experiments. Meanwhile, one simultaneous injection of all reagents and bioagents into 

saturated sand could be the best option from the practical point of view. However, 

simultaneous injection of the suspensions of biogas-producing strain Acidovorax sp. DN1 

and biosealing strain S. pasteurii DSMZ33 altogether with denitrifying and biosealing media 

did not produce biogas because of high salinity of the medium that was used for biosealing. 

Therefore, two injections of the different solutions for mitigation of sand liquefaction are 

essential for biogas production and its biosealing in sand. The halophilic denitrification 

bacteria could be the solution to the problem. 

Another effective way of biomitigation of sand liquefaction could be application of 

one bacterial species for both biogas production and biosealing. Even though strain S. 

pasteurii DSMZ33, which was used for the biosealing of the gas bubbles, was able to reduce 

nitrate with ethanol, the final product of denitrification was nitrite instead of nitrogen gas. 

More halophilic and alkaliphilic bacteria strains need to be studied to find the preferable 

strain with both denitrification and urease-producing ability.
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APPENDIX 

 
 

Biogas generation rate in sand columns 
  Water Level Change (cm) 
Time (hrs) 1a 2a 3a 1b 2b 3b 
0 0 0 0 0 0 0 
18 -0.5 -0.7 -0.3 1.5 1 2 
25 0.4 0.1 0.5 3.5 3.5 4.5 
40 1.2 0.5 1.3 5.2 5.1 5.8 
48 1.7 0.8 1.5 5.2 5.7 5.8 
63 3.4 1.8 2.5 5 5.5 5.5 
69 4.2 2.6 3.1 5 5.4 5.5 
88 4.8 3.9 4.2 4.8 5.3 5.3 
98 4.8 4.6 4.8 4.8 5.3 5.3 
145 4.6 4.7 4.5 4.8 5.3 5.3 
169 4.6 4.6 4.5 4.8 5.3 5.3 
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Biogas stability test under seepage in sand columns 
2a, 3a: denitrification process only; 2b, 3b: denitrification followed by biosealing 

  2a: downward flow 3a: upward flow 2b: downward flow 3b: upward flow 
Initial Water Height (cm) 104.00 103.00 101.30 102.30 
Initial Sand Height (cm) 102.50 101.00 99.00 101.50 
Initial Degree of Saturation (%) 100.00 100.00 100.00 100.00 
Initial pH 7.00 7.00 6.80 7.00 
Water Level Increase after den. (cm) 4.60 4.50 5.30 5.30 
Sand Level Increase after den. (cm) 0.00 0.35 0.20 0.10 
Gas Generation (cm3) 209.76 205.20 241.68 241.68 
Degree of Saturation after den. (%) 89.68 89.64 87.16 87.86 
pH after den. 7.00 7.20 7.10 7.40 
pH after biosealing n/a n/a 9.60 9.50 

0 day 
Measured Degree of Saturation (%) 89.83 89.64 87.16 87.86 
Permeability (cm/s) 0.52 0.53 0.47 0.5 

1 day 
Measured Degree of Saturation (%) 94.90 99.60 89.54 88.57 
Permeability (cm/s) 0.56 0.67 0.51 0.49 

2 day 
Measured Degree of Saturation (%) 98.26 100.00 91.70 89.14 
Permeability (cm/s) 0.58 0.67 0.51 0.49 
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Continuned 
3 day 

Measured Degree of Saturation (%) 100.00 100.00 91.70 91.06 
Permeability (cm/s) 0.61 0.67 0.51 0.49  

4 day 
Measured Degree of Saturation (%) 100.00 100.00 91.70 91.89 
Permeability (cm/s) 0.61 0.67 0.52 0.48 

5 day 
Measured Degree of Saturation (%) 100.00 100.00 91.70 92.56  
Permeability (cm/s) 0.61 0.67 0.52 0.48  

6 day 
Measured Degree of Saturation (%) 100.00 100.00 91.70 93.85 
Permeability (cm/s) 0.61 0.67 0.52 0.48 

7 day 
Measured Degree of Saturation (%) 100 100.00 91.70 94.02 
Permeability (cm/s) 0.61 0.67 0.52 0.48 

8 day 
Measured Degree of Saturation (%) 100 100.00 91.70 94.02 
Permeability (cm/s) 0.61 0.67 0.52 0.48 

9 day 
Measured Degree of Saturation (%) 100 100.00 91.70 94.02 
Permeability (cm/s) 0.61 0.67 0.52 0.48 

10 day 
Measured Degree of Saturation (%) 100 100.00 91.70 94.02 
Permeability (cm/s) 0.61 0.67 0.52 0.48 
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